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Fixed Point of TF -contractive Single-valued Mappings
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Abstract. In this paper, we study the existence of fixed points for

mappings defined on complete metric space (X, d) satisfying a general

contractive inequality depended on another function. This conditions

is analogous of Banach conditions and general contraction condition of

integral type.
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1. Introduction

The first important result on fixed points for contractive-type mapping was
the well-known Banach’s Contraction Principle appeared in explicit form in
Banach’s thesis in 1922, where it was used to establish the existence of a solution
for an integral equation [1]. In the general setting of complete metric space this
theorem runs as follows (see [4,Theorem 2.1] or [11,Theorem 1.2.2]).

Theorem 1.1. [Banach’s Contraction Principle] Let (X, d) be a complete
metric space and f : X −→ X be a contraction (there exists k ∈ (0, 1) such
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that for each x, y ∈ X; d(fx, fy) ≤ kd(x, y)). Then f has a unique fixed point
in X, and for each x0 ∈ X the sequence of iterates {fnx0} converges to this
fixed point.

After this classical result Kannan in [3] analyzed a substantially new type
of contractive condition. Since then there have been many theorems dealing
with mappings satisfying various types of contractive inequalities. Such con-
ditions involve linear and nonlinear expressions (rational, irrational, and of
general type). The interested reader who wants to know more about this mat-
ter is recommended to go deep into the survey articles by Rhoades [8,9,10] and
Meszaros [6], and into the references therein. Another result on fixed points for
contractive-type mapping is generally attributed to Edelstein (1962) who actu-
ally obtained slightly more general versions. In the general setting of compact
metric spaces this result runs as follows (see [4, Theorem 2.2]).

Theorem 1.2. Let (X, d) be a compact metric space and f : X −→ X be a
contractive mapping (for every x, y ∈ X such that x �= y; d(fx, fy) < d(x, y)).
Then f has a unique fixed point in X, and for any x0 ∈ X the sequence of
iterates {fnx0} converges to this fixed point.

Also in 2002 A. Branciari [2] analyzed the existence of fixed point for map-
ping f defined on a complete metric space (X, d) satisfying a contractive con-
dition of integral type (see the following theorem).

Theorem 1.3. Let (X, d) be a complete metric space, α ∈ (0, 1) and f : X −→
X be a mapping such that for each x, y ∈ X,

∫ d(fx,fy)

0
φ(t)dt ≤ α

∫ d(x,y)

0
φ(t)dt,

where φ : [0, +∞) −→ [0, +∞] is a Lebesgue-integrable mapping which is sum-
mable (i.e., with finite integral) on each compact subset of [0, +∞), nonnegative,
and such that for each ε > 0,

∫ ε

0 φ(t)dt > 0; then f has a unique fixed point
a ∈ X such that for each x ∈ X, lim

n→∞fnx = a.

Fixed point theory has application in Fuzzy system too. For more infor-
mation about Fuzzy system we can see [5] and [7]. The aim of this paper is
to study the existence of fixed point for a mapping f defined on a complete
metric space (X, d) such that it is a TF − contraction. In particular, we ex-
tend the main theorem due to A. Branciari [2] and introduce a new class of
contractive mappings. First we introduce the TF − contraction function and
then extended A. Branciari Theorem and Banach-contraction principle, by the
same method for proof of A. Branciari theorem. At the end of paper some
examples and applications concerning this kind of contractions are given. In
the 2002 A. Branciari gave an example [2; Example 3.6] such that it can be
studied with the help of Theorem 1.2. (because X = {1/n : n ∈ N}⋃{0}, with
metric induced by R, d(x, y) = |x − y|, is a compact metric space and f is a
contractive mapping). In the end of this paper we give an example such that
we can not study it with Theorem 1.1, Theorem 1.2 and Branciari theorem,
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but we can use the main theorem (Theorem 2.5 ) in this paper. In the sequel,
N will represent the set of natural numbers, R the set of real numbers and R+

the set of nonnegative real numbers.

2. Definitions and Main Result

The following theorem (Theorem 2.5) is the main result of this paper. First,
we give some new definitions.

At first we introduce the notation
Ψ :=

{
F : R+ −→ R+ : F is nondecreasing continuous from the right and F−1(0) =

{0}}.

Definition 2.1. Let (X, d) be a metric space, let f, T : X −→ X be two functions

and let F ∈ Ψ. A mapping f is said to be a TF − contraction if there exists α ∈ [0, 1)

such that for all x, y ∈ X

F
(
d(Tfx, Tfy)

) ≤ αF
(
d(Tx, Ty)

)
.

Remark 2.2. By taking Tx ≡ x and F (x) ≡ x, TF − contraction and contraction

are equivalent. Also by taking Fx ≡ x we can define T − contraction and by taking

Tx ≡ x we can define IF − contraction (I is identify function).

Example 2.3. Let X = [1, +∞) endowed with the Euclidean metric. We consider

two mappings T, f : X −→ X by Tx = 1
x

+ 1 and fx = 2x. Obviously f is not a

contraction but f is a TF − contraction where F (x) ≡ x.

Definition 2.4. Let (X, d) be a metric space. A mapping T : X −→ X is said to be

graph closed if for every sequence {xn} such that lim
n→∞

Txn = a then for some b ∈ X

Tb = a. For example the identity function on X is graph closed.

Theorem 2.5. Let (X, d) be a complete metric space, α ∈ [0, 1), T, f : X −→ X be

two mappings such that T is one-to-one and graph closed and f is a TF − contraction

where F ∈ Ψ; then f has a unique fixed point a ∈ X. Also for every x ∈ X, the

sequence of iterates {Tfnx} converges to Ta.

Proof. Let α ∈ [0, 1) such that for all x, y ∈ X

(1) F
(
d(Tfx, Tfy)

) ≤ αF
(
d(Tx, Ty)

)
.

So if for a, b > 0, F (a) ≤ αF (b) then a < b. Also

(2) F (ε) > 0,

for all ε > 0.

Let x ∈ X. We break the argument into 4 steps.

Step 1. limn→∞ d(Tfn+1x, Tfnx) = 0.

Proof. Since (1) holds, for all n ∈ N :

F
(
d(Tfn+1x, Tfnx)

) ≤ αnF
(
d(Tfx, Tx)

)
(x ∈ X).

As a consequence, since α ∈ [0, 1), we further have

(3) F
(
d(Tfn+1x, Tfnx)

) → 0+ as n → ∞.
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Since (2) and (3) hold

(4) lim
n→∞

d(Tfn+1x, Tfnx) = 0.

Step 2. {Tfnx} is a bounded sequence.

Proof. If {Tfnx}∞n=1is an unbounded sequence then, we choose the subsequence

{n(k)}∞k=1 such that n(1) = 1 and for each k ∈ N, n(k + 1) is ”minimal” in the sense

that

d(Tfn(k+1)x, Tfn(k)x) > 1

and

d(Tfmx, Tfn(k)x) ≤ 1 ∀ m = n(k) + 1, n(k) + 2, ..., n(k + 1) − 1.

So, using the triangular inequality

1 < d(Tfn(k+1)x, Tfn(k)x)

≤ d(Tfn(k+1)x, Tfn(k+1)−1x) + d(Tfn(k+1)−1x, Tfn(k)x)

≤ d(Tfn(k+1)x, Tfn(k+1)−1x) + 1(5)

Hence, from (4) and (5),

(6) d(Tfn(k+1)x, Tfn(k)x) → 1+ as k → +∞.

Using (1) and using the triangular inequality,

1 < d(Tfn(k+1)x, Tfn(k)x)

≤ d(Tfn(k+1)−1x, Tfn(k)−1x)

≤ d(Tfn(k+1)−1x, Tfn(k)x) + d(Tfn(k)x, Tfn(k)−1x)

≤ 1 + d(Tfn(k)x, Tfn(k)−1x).(7)

So from (4) and (7),

(8) d(Tfn(k+1)−1x, Tfn(k)−1x) → 1+ as k → +∞.

Since F
(
d(Tfn(k+1)x, Tfn(k)x)

) ≤ αF
(
d(Tfn(k+1)−1x, Tfn(k)−1x)

)
, F is continuous

from the right and (6) and (8) hold, F (1) ≤ αF (1). So F (1) = 0 and this is a con-

tradiction.

Step 3. {Tfnx}∞n=1 is a Cauchy sequence.

Proof. Using (1), for every m, n ∈ N (m > n),

(9) F
(
d(Tfmx, Tfnx)

) ≤ αnF
(
d(Tfm−nx, Tx)

)
.

From step 2, inequality (9) and α ∈ [0, 1),

(10) lim
m,n→∞

F
(
d(Tfmx, Tfnx)

)
= 0

Since F is nondecreasing and (2) holds lim
m,n→∞

d(Tfmx, Tfnx) = 0, and this shows

that {Tfnx}∞n=1 is a Cauchy sequence.

Step 4. f has a unique fixed point.

Proof. Since {Tfnx}∞n=1 is a Cauchy sequence and T is graph closed there exists

a ∈ X such that lim
n→∞

Tfnx = Ta. Also

(11) F
(
d(Tfn+1x, Tfa)

) ≤ αF
(
d(Tfnx, Ta)

)
.



Fixed Point of TF − contractive Single-valued Mappings 29

Since d(Tfnx, Ta) −→ 0+ we conclude that F
(
d(Tfnx, Ta)

) −→ 0 as n −→ +∞.

So, from (11) F
(
d(Tfn+1x, Tfa)

) −→ 0. Hence from (2), lim
n→∞

Tfn+1x = Tfa. So

Ta = Tfa. Since T is one-to-one a = fa. Therefore f has a fixed point.

Since T is one-to-one and f is a TF − contraction, f has a unique fixed point. �

3. Examples and Applications

In this section, we give some applications and some examples concerning these

type of contractive mappings, which clarify the connection between our result and

the classical ones.

Remark 3.1. Theorem 2.5 is a generalization of Banach’s contraction principle (The-

orem 1.1); letting F (x) ≡ x and Tx ≡ x, we have

F
(
d(Tfx, Tfy)

)
= d(fx, fy)

≤ αd(x, y)

= αF
(
d(Tx, Ty)

)
.

Remark 3.2. Theorem 2.5 is a generalization of the Branciari theorem (Theorem

1.3); letting Tx = x for each x ∈ X and F (s) =
∫ s

0
φ(t)dt (obviously F ∈ Ψ), so

F
(
d(Tfx, Tfy)

)
=

∫ d(Tfx,Tfy)

0

φ(t)dt =

∫ d(fx,fy)

0

φ(t)dt

≤ α

∫ d(x,y)

0

φ(t)dt

= α

∫ d(Tx,Ty)

0

φ(t)dt = αF
(
d(Tx, Ty)

)
.

Using Theorem 2.5, by taking F (x) ≡ x, we conclude the following theorem which

extends Banach contraction principle.

Theorem 3.3. Let (X, d) be a complete metric space and T : X −→ X be one-to-one

and graph closed. Then for every T − contraction function f : X −→ X, f has a

unique fixed point.

Example 3.4. Let X = [1, +∞) endowed with the Euclidean metric. Since X is

a closed subset of R, it is a complete metric space. We define T, f : X −→ X by

Tx = ln x + 1 and fx = k
√

x, where k ≥ 1 be a fixed element of R. Obviously f is

not a contraction but f is a TF − contraction, where F (t) = t. Therefore, by using

Theorem 2.5, f has a unique fixed point.

The following is our main example which shows that the conditions in Theorem

2.5 is weaker than of Theorems 1.1, 1.2, 1.3 and 3.3.

Example 3.5. Let X := { 1
n

| n ∈ N}⋃ {0} endowed with the Euclidean metric.

We consider a mapping f : X −→ X defined by

fx =




1
n+3

; x = 1
n
, n is odd

0 ; x = 0
1

n−1
; x = 1

n
, n is even
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By taking n = 2 and m = 4, |f(1/m)−f(1/n)| > |1/m−1/n|, so f is not a contraction

and is not a contractive mapping in the sense of Edelstein either. Hence, we can not

conclude that, f has a fixed point by Theorem 1.1 and Theorem 1.2 and Branciari

theorem. Because if ∫ |fx−fy|

0

φ(t)dt ≤ α

∫ |x−y|

0

φ(t)dt

for all x, y ∈ X and for some φ and α ∈ [0, 1), then we must have |f(x) − f(y)| ≤
|x − y|, but this is false.

Now we defined φ : [0, +∞) −→ [0, +∞) by

φ(t) =

{
t
1
t
−2[1 − log t] ; 0 < t < e

0 ; t = 0 and t ≥ e

and F (τ ) =
∫ τ

0
φ(t)dt and define T : X −→ X by

Tx =




1
n−1

; x = 1
n
, n is even

0 ; x = 0
1

n+1
; x = 1

n
, n is odd

Obviously F (τ ) =
∫ τ

0
φ(t)dt = τ

1
τ for 0 < τ < e and F (τ ) = e

1
e for τ ≥ e, T is

one-to-one and graph closed and

Tfx =




1
n+2

; x = 1
n
, n is odd

0 ; x = 0
1
n

; x = 1
n
, n is even

Since sup |Tfx−Tfy|
|Tx−Ty

| = 1, f is not a T − contraction, and so we can not use Theorem

3.3 in this case. Now we show that the conditions of Theorem 2.5 hold. We show that

(12) F
(|Tfx − Tfy|) ≤ 1

2
F

(|Tx − Ty|)
for all x, y ∈ X. There are 5 cases.

Case 1. Let x = 1
m

, y = 1
n

and m and n are even. Then

F
(|Tfx − Tfy|) ≤ 1

2
F

(|Tx − Ty|)
⇔ | 1

m
− 1

n
|

1
| 1

m
− 1

n
| ≤ 1

2
| 1

m − 1
− 1

n − 1
|

1
| 1

m−1− 1
n−1 |

⇔ |m − n

mn
|| mn

m−n
|.| (m − 1)(n − 1)

m − n
|| (m−1)(n−1)

m−n
| ≤ 1

2

⇔ | (m − 1)(n − 1)

mn
|| (m−1)(n−1)

m−n
|.| (m − n)

mn
|| (m+n−1)

m−n
| ≤ 1

2

Obviously the last inequality holds, because

|m − n

mn
|| m+n−1

m−n
| ≤ 1

2

and

| (m − 1)(n − 1)

mn
| ≤ 1 and | (m − 1)(n − 1)

m − n
| ≥ 1
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and so

| (m − 1)(n − 1)

mn
|| (m−1)(n−1)

m−n
| ≤ 1.

Therefore for this case (12) holds.

Case 2. Let x = 1
m

, y = 1
n

where m and n are odd.

Case 3. Let x = 1
m

, y = 1
n

where m is even and n is odd.

By the same argument in case 1 we conclude that (12) holds for case 2 and case 3.

Case 4. Let x = 0, y = 1
n

where n is even. Then

F
(|Tfx − Tfy|) ≤ 1

2
F

(|Tx − Ty|)
⇔ (

1

n
)n ≤ 1

2
(

1

n − 1
)n−1

⇔ (
1

n
)n(n − 1)n−1 ≤ 1

2

⇔ (
n − 1

n
)n−1.

1

n
≤ 1

2
.

The last inequality holds, because

(
n − 1

n
)n−1 ≤ 1 and

1

n
≤ 1

2
.

Therefore (12) is true for this case.

Case 5. Let x = 0and y = 1
n

where n is odd. By the same argument in case 4

we conclude that (12) holds for this case.

Hence, (12) holds for all x, y ∈ X. So f is TF − contraction and the conditions of

Theorem 2.5 hold. Therefore f has a unique fixed point.
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